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The degree of L~-approximationfor a class of positive convolution operators
is investigated. Recent results of De Vore, Bojanic, and Shisha for the uniform
approximation by these operators and the K-functional of Peetre are employed
to obtain the degree of approximation in terms of the integral modulus of smooth­
ness.

1. INTRODUCTION

Let I = [0, r], 1 ~ p < 00 and let Lp(I) denote the space of real valued
pth power integrable functions on I, with II . lip the usual Lp-norm on I.
Let {Hiy)} be a sequence of nonnegative, even and continuous functions
on [-r, r] such that

r Hn(y) dy = 1,
-r

n = 1,2,... , (1.1)

and

r y2Hn(y) dy == f-tn2 --+ 0,
-r

n --+ 00. (1.2)

For f E LP(I), 1 ~ p < 00, and 0 ~ x ~ r, we define the convolution
operator

Kn(f, x) = ritt) Hn{t - x) dt, n = 1,2,.... (1.3)

This is a linear operator mapping Lp(I) into Lp(I) and it is positive on [.
The sequence {lLn} determines the rate of uniform approximation of a
continuous function f by the operator Kn(f, x). There are two important
examples of (1.3).
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Korovkin operators. Let ep be a nonnegative, even and continuous
function on [-r, r] decreasing on [0, r] and such that ep(O) = 1 and 0 ~
ep(t) < 1 for 0 < t ~ r. ForIE Lp(f) we define

where

Kn(f, x) = Pn rf(t)[ep(t - x)]n dt,

p;;I = 2r [ep(t)r dt.

(1.4)

Operators (1.4) were introduced by Korovkin [8], who used them for the
approximation of continuous functions. Later Bojanic and Shisha [3]
showed that

lim 1 - ep(t) = c
t~o+ t~

for some positive numbers cx and c implies, for (1.4)

(1.5)

n --+ 00. (1.6)

Many important special cases of (1.5) were noted in [3].

Bojanic-DeVore operators. We consider approximating polynomials
generated by a sequence of orthogonal polynomials {Pn} on [-1, 1] whose
weight function w is nonnegative, even and Lebesgue integrable on [-1, 1]
and has the following properties:

and

Let

0< m ~ w(x)

w(x) ~ M < 00

for x E [-r, r], 0 < r ~ 1

for x E [-0, 0], 0 < 0 ~ 1.

(1.7)

(1.8)

( ) [
P2n(X) ]2

Rn x = Cn (X2 _ CX2 )( 2 _ CX 2 ) ,
2n X 2n-l

where CX2n and CX2n-l are the two smallest positive zeros of P2n and Cn > 0
is chosen so that

r Rn(t) dt = 1,
-T

n = 1,2,3,....

For IE LiI) we define

KnU; x) = rf(t) Rn(t - x) dt. (1.9)
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Using (1.7) and (1.8), Bojanic [2] and DeVore [4] showed that, for (1.9)

n --+ 00. (LlO)

In this paper we shall utilize Peetre's K-functional [12] to obtain the
degree of Lp-approximation with (I.3). The method of Peetre's K-functional
gives the estimate of the rate of approximation in terms of the integral
modulus of smoothness W2,ij, h), while some previous results in this direction
were expressed in terms of the usual L p modulus of continuity (see for
instance, Mamedov [9]).

2. DEGREE OF ApPROXIMATION

In the sequel let ei(x) = Xi for i = 0, 1,2.

LEMMA 1. For n = 1,2,3,.. " we have

rHn{t - x) dt = Kn(eo , x) ~ 1,
o

o ~ x ~ r, t2.1)

1 c::;; P < 00,

r Hn(t - x) dx ~ I,
o

°~ t ~ r, (2.2)

(2.3)

Il-n
2

I Kn((t - x), x)1 ~ T ' °< S ~ x ~ r - 0 < r, (2.4)

21l-n2

I Kn(eo' x) - I I ~ ~ , °< S ~ x ~ r - 8 < r, (2.5)

Kn«(t - X)2 x) c::;; fL,,2, °c::;; X ~ r, (2.6)

and

o c::;; x ~ r.K,,(I t - x I, x) c::;; Il-n ,

Proof (2.1) For x E [0, r],

Kn(eo , x) = IT Hn{t - x) dt c::;; r Hn(y) dy = J.
o -r

(2.2) For t E [0, r],

(2.7)
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(2.3) Assume p> 1, lip + 1jq = 1, °~ x ~ r, and fE L,,[O, r].
By (2.1), (2.2), and HOlder's

(f
r )l/q (fr )1/1'I Kn(f, x)1 ~ 0 Hn(t - x) dt 0 Hn(t - x) If(t)IP dt

(f r )1/1'
~ Hit - x) [f(t)[p dt

o

and

The case p = 1 is similar.

(2.4) Since Hn(y) is even on [-r, r], for 0<0 ~ x ~ r - 0 < r
we have

I Kn((t - x), x)[ = Ir(t - x) Hn(t - x) dt I

Ifr-ro I 2
= ro yHn(y) dy ~ fL; .

(2.5) IfO ~ x ~ r then

Kn(eo , x) = 1 - [{ Hn(t) dt + fro Hn(t) dt]'
r-x -r

IfO < 0 ~ x ~ r - 0 < r then

2 fr 2 _ fLn2

I Kn(eo , x) - 1 I ~ 02 -r t Hn(t) dt - 2 82 ,

(2.6) This is obvious.

(2.7) This follows from Holder's, (2.1) and (2.6).

Let 1 ~ p < 00 and L"2(1) be the space of those functions f E L,,(I) with
l' absolutely continuous and f" E Lp(I). The next lemma gives an upper
bound for the degree of L,,-approximation with (1.3) to "smooth" functions
fE L,,2(I).

LEMMA 2. Let fE L,,2(I) and 1 ~ p < 00. For all n sufficiently large,

II Kn(f) - III" ~ c"(ll/ll,, + 11f" II,,) /l-lj",

where c" is a positive constant, independent off and n.

Proof First assume p > 1 and x E [0, r]. Since f E L"2(1), we have

f(t) - f(x) = (t - x) f'(x) + f (t - u) f"(u) du
x
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and

Kn(f(t) - I(x), x) = j'(x) Kn(t - x, x) + Kn [f: (t - u) f"(u) du, x]

'=-== llx) + 12(x).

Using [6] we obtain

(r )1 /P
II /1 lip ~ c1(ll/llp+ 11f" lip) )0 I Kn(t - x, X)JP dx .

Also

I Kn(t - x, X)\ = If (t - x) Hn(t - x) dt I
= If:X

tHn(t) dt I~ r, 0 ~ x ~ r.

Hence, using (2.4) with 0 < 8 < rj2

(r )1/P 2
)0 I Kit - x, x)JP dx ~ 2r81

/
p + r1/p I-tSn

and

We have

I /lx): ~ f Hn(t - x) I t - x I If If"(u)~ du Idt

~ OfN(X) f Hit - x)(t - x)2 dt,

where
1 t

OfN(X) = sup -- f \f"(u)! du
o';;t"r t - x x

topx

is the Hardy-Littlewood majorante of f" at x. Since p > I and f" E LvC/),
OfN E L p(l) with {l3, Theorem 13.15]

r[OfN(X)]P dx ~ 2 ( p ~ I rrIf"(x)!P dx.

Therefore, using (2.6)

II /2 lip ~ 21
/'P ( P ~ 1 ) 11f" !Ip I-tn2

•

By [6]

II(x) I I Kn(eo , x) - 1 I ~ Clll/lip+ 11f" lip) I Kn(eo , x) - 1 I·



POSITIVE CONVOLUTION OPERATORS 359

Let°< 0 < rf2. Using (1.1), (2.1), (2.5) and the fact that Hfi is even we have

II Kn(eo) - eo lip

~ (( (1 - Kn(eo , x) dXr'P

= [(f + f) rHn(t) dt dx + ((-a L~J L~x Hit) dt dxt
P

~ [0 +rHn(t) ( dx dt + 0 +rHn(t) f.~t dx dtr
p

Hence

Choose 0 = I-'n. For all n sufficiently large, °< I-'n < rf2 by (1.2) and it
follows from the above calculations that

Now assume p = 1, x E [0, r] and 0 < S < rf2. As before,

and

Next

(\ Ilx) \ dx

~ rr Hn(t - x) I t - x I Ir I f"(u)1 du \ dt dx
o 0 x

= (( + r-a
+ L~J rHn(t - x) I t - x I If I f"(u)1 du Idt dx
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For A z let Tl = {t: I t - x I ::s:; o} and T2 = {t: I t - x [ ~ o}. Then,
using (2.6),

A z ::s:; r-6 J Hn(t - x) I x - t I IrI f"(u)1 du Idt dx
6 ~ ~

+ r- Ii rHn(t - x) (t ~ x)2 IrIf"(u) I du I dt dx
6 0 \ '" I

::s:; 0 r-Ii J Hn(t - x) IrI f"(u)1 du Idt dx + r 11f" III fJ/ .
6 T1 '" a

Also

(-Ii J Hn(t - x) I CI f"(u) I du \ dt dx
J6 T1 \ • '"

~ i T

-

6

/11'" Hn(t - x) I'" 'f"(u)! du dt
6 ",-Ii t

+ r+li Hn(t - x) f I f"(u) I du dtl dx

~ r-Ii If-Ii Hit - x) L"'-6 I f"(u) I du dt

+ ["'+Ii Hn(t _ x) (H I f"(u)1 du dt( dx

~ iT
-

O If'" I f"(u) I IT Hn(t - x) dt du
Ii i "'~o 0

+ (+Ii [f"(u)[ ( Hn(t - x) dt dU\ dx

~ IT-Ii 1"'+8 I f"(u) I du dx = IT-Ii Iii II"(t + x)[ dt dx
Ii ",-Ii Ii -Ii

= J6 (-5 If"(t + x)1 dx dt ~ 20 II f" III .
-Ii JIi

Hence

Finally, using (2.7)

Ai ::s:; 11f" III OfLn, i = 1,3,
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Lemma 2 for p = I follows by choosing 8 = I-'-n .
In what follows we will measure smoothness using the K-functional of

Petre [12]. It is, for f E LP(/), I ~ p ~ 00, defined by

Kit,1) = inf (Ilf - g lip + t(11 g lip + II g" lip),
gELp

2 (I)
t ~ o.

This measures the degree of approximation of a function f E L p(l) by
smoother functions g E L p2(/) with simultaneous control on the size of
II g lip + 1/ g" lip· The second order integral modulus of smoothness is given by

W2P(f, h) = sup Ilf(' + t) - 2fO + f(· - t)llp (It)
O<t';;;h

where /t indicates that the Lp-norm is taken over the interval [0 + t, r - t].
It is known [5, 7] that there are constants C1 > 0, C2 > 0, independent off
and p, such that

C1W2.1J(f, t1/2) ~ Kp(t, 1) ~ min(l, t) Ilfllp + 2C2W2.P(f, t1/2). (2.8)

We shall use Lemma 2 and (2.8) to establish the degree of approximation
with (1.3). Namely, we first approximate fE L1J(I) by g E L p 2(1) and then
use Lemma 2, the definition of the K-functional and (2.8). See also [1, 5,
10, 11] for this approach.

THEOREM 3. Let fE Lp(I), 1 ~ p < 00. For all n sufficiently large,

II Kn(.f) - flip ~ Mp[I-'-~/P II flip + W2.r,(f, 1-'-~/2P)], (2.9)

where M p is a positive constant, independent off and n.

Proof For all n sufficiently large,

II Kn(h) - h lip ~ 2 II h lip,

~ Cpl-'-~/P(II h lip + II h" lip),

hE L p(/),

h EO L p 2(1),

where C p is positive constant, independent of hand n. WhenfE L p (/) and g
is an arbitrary function in L p2(/), then

II Kif) - flip ~ II Kn(.f - g) - (.f - g)llp + II Kn(g) - g lip

~ 2 Ilf - g lip + Cpl-'-~P(II g lip + II g" lip).
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n -+ 00.

Taking the infimum over all g E L p 2(I) on the right hand side, using the
definition of the K-functional and (2.8), we obtain (2.9).

COROLLARY 4. Iff E Lip({:J, LP(I)) for 0 < f3 ~ I then

II Kn(f) - flip = 0(fL~/2P),

Here the Lipschitz class Lip({:J, L p) of order f3 with respect to the Lp-norm
is defined as the collection of all functions f E LP(I) with the property
w2,p(f, t) = O(t 13), t -+ 0+.

Remarks. Since (1.3) is a global contractive map, we can also apply the
general quantitative estimate of Berens and De Vore [I]. Define

We have shown in the proof of Lemma 2 that II Kieo) - eo lip = O(fL~P)

as n -+ 00. Also

II Kn(e1) - e1 lip ~r[Kn(t - x, x)IP dx1
/ P + r II Kieo) - eo lip.

It now follows from (2.4) that II Kn(e1) - e1 lip = O(fL}!P) as n -+ 00. Hence

n -+ 00.

Applying [I, p. 291] we obtain, for all sufficiently large n,

[I Kn(f) - fl[p ~ M~[fL~/p2 Ilfllp + W2,P(f, fL~/2p2)], (2.10)

where M~ is a positive constant, independent off and n.
Estimate (2.9) is better than (2,10) if p > I. This is not too surprising,

since Lemma I of [I] appears to be a rather coarse estimate for p > I.
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