Degree of L_{ρ}-Approximation by Certain Positive Convolution Operators

Bruce Wood
Mathematics Department, University of Arizona, Tucson, Arizona 85721

Communicated by Oved Shisha
Received December 21, 1976

The degree of L_{p}-approximation for a class of positive convolution operators is investigated. Recent results of De Vore, Bojanic, and Shisha for the uniform approximation by these operators and the K-functional of Peetre are employed to obtain the degree of approximation in terms of the integral modulus of smoothness.

1. Introduction

Let $I=[0, r], 1 \leqslant p<\infty$ and let $L_{p}(I)$ denote the space of real valued p th power integrable functions on I, with $\|\cdot\|_{p}$ the usual L_{p}-norm on I. Let $\left\{H_{n}(y)\right\}$ be a sequence of nonnegative, even and continuous functions on $[-r, r]$ such that

$$
\begin{equation*}
\int_{-r}^{r} H_{n}(y) d y=1, \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-r}^{r} y^{2} H_{n}(y) d y \equiv \mu_{n}^{2} \rightarrow 0, \quad n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

For $f \in L_{p}(I), 1 \leqslant p<\infty$, and $0 \leqslant x \leqslant r$, we define the convolution operator

$$
\begin{equation*}
K_{n}(f, x)=\int_{0}^{r} f(t) H_{n}(t-x) d t, \quad n=1,2, \ldots \tag{1.3}
\end{equation*}
$$

This is a linear operator mapping $L_{p}(I)$ into $L_{p}(I)$ and it is positive on I. The sequence $\left\{\mu_{n}\right\}$ determines the rate of uniform approximation of a continuous function f by the operator $K_{n}(f, x)$. There are two important examples of (1.3).

Korovkin operators. Let ϕ be a nonnegative, even and continuous function on $[-r, r]$ decreasing on $[0, r]$ and such that $\phi(0)=1$ and $0 \leqslant$ $\phi(t)<1$ for $0<t \leqslant r$. For $f \in L_{p}(I)$ we define

$$
\begin{equation*}
K_{n}(f, x)=\rho_{n} \int_{0}^{r} f(t)[\phi(t-x)]^{n} d t \tag{1.4}
\end{equation*}
$$

where

$$
\rho_{n}^{-1}=2 \int_{0}^{r}[\phi(t)]^{n} d t
$$

Operators (1.4) were introduced by Korovkin [8], who used them for the approximation of continuous functions. Later Bojanic and Shisha [3] showed that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{1-\phi(t)}{t^{\alpha}}=c \tag{1.5}
\end{equation*}
$$

for some positive numbers α and c implies, for (1.4)

$$
\begin{equation*}
\mu_{n}=O\left(n^{-1 / \alpha}\right), \quad n \rightarrow \infty . \tag{1.6}
\end{equation*}
$$

Many important special cases of (1.5) were noted in [3].
Bojanic-DeVore operators. We consider approximating polynomials generated by a sequence of orthogonal polynomials $\left\{P_{n}\right\}$ on $[-1,1]$ whose weight function w is nonnegative, even and Lebesgue integrable on $[-1,1]$ and has the following properties:

$$
\begin{equation*}
0<m \leqslant w(x) \quad \text { for } \quad x \in[-r, r], \quad 0<r \leqslant 1 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
w(x) \leqslant M<\infty \quad \text { for } \quad x \in[-\delta, \delta], \quad 0<\delta \leqslant 1 \tag{1.8}
\end{equation*}
$$

Let

$$
R_{n}(x)=c_{n}\left[\frac{P_{2 n}(x)}{\left(x^{2}-\alpha_{2 n}^{2}\right)\left(x^{2}-x_{2 n-1}^{2}\right)}\right]^{2},
$$

where $\alpha_{2 n}$ and $\alpha_{2 n-1}$ are the two smallest positive zeros of $P_{2 n}$ and $c_{n}>0$ is chosen so that

$$
\int_{-r}^{r} R_{n}(t) d t=1, \quad n=1,2,3, \ldots
$$

For $f \in L_{p}(I)$ we define

$$
\begin{equation*}
K_{n}(f, x)=\int_{0}^{r} f(t) R_{n}(t-x) d t . \tag{1.9}
\end{equation*}
$$

Using (1.7) and (1.8), Bojanic [2] and DeVore [4] showed that, for (1.9)

$$
\begin{equation*}
\mu_{n}=O\left(n^{-1}\right), \quad n \rightarrow \infty \tag{1.10}
\end{equation*}
$$

In this paper we shall utilize Peetre's K-functional [12] to obtain the degree of L_{p}-approximation with (1.3). The method of Peetre's K-functional gives the estimate of the rate of approximation in terms of the integral modulus of smoothness $\omega_{2, p}(f, h)$, while some previous results in this direction were expressed in terms of the usual L_{p} modulus of continuity (see for instance, Mamedov [9]).

2. Degree of Approximation

In the sequel let $e_{i}(x)=x^{i}$ for $i=0,1,2$.
Lemma 1. For $n=1,2,3, \ldots$, we have

$$
\begin{align*}
& \int_{0}^{r} H_{n}(t-x) d t=K_{n}\left(e_{0}, x\right) \leqslant 1, \quad 0 \leqslant x \leqslant r \tag{2.1}\\
& \int_{0}^{r} H_{n}(t-x) d x \leqslant 1, \quad 0 \leqslant t \leqslant r \tag{2.2}\\
& \left\|K_{n}\right\|_{\mu} \leqslant 1, \quad 1 \leqslant p<\infty \tag{2.3}\\
& \left|K_{n}((t-x), x)\right| \leqslant \frac{\mu_{n}^{2}}{\delta}, \quad 0<\delta \leqslant x \leqslant r-\delta<r \tag{2.4}\\
& \left|K_{n}\left(e_{0}, x\right)-1\right| \leqslant \frac{2 \mu_{n}^{2}}{\delta^{2}}, \quad 0<\delta \leqslant x \leqslant r-\delta<r, \tag{2.5}\\
& K_{n}\left((t-x)^{2} x\right) \leqslant \mu_{n}^{2}, \quad 0 \leqslant x \leqslant r \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
K_{n}(|t-x|, x) \leqslant \mu_{n}, \quad 0 \leqslant x \leqslant r . \tag{2.7}
\end{equation*}
$$

Proof. (2.1) For $x \in[0, r]$,

$$
K_{n}\left(e_{0}, x\right)=\int_{0}^{r} H_{n}(t-x) d t \leqslant \int_{-r}^{r} H_{n}(y) d y=1
$$

(2.2) For $t \in[0, r]$,

$$
\int_{0}^{r} H_{n}(t-x) d x=\int_{t-r}^{t} H_{n}(y) d y \leqslant 1
$$

(2.3) Assume $p>1,1 / p+1 / q=1,0 \leqslant x \leqslant r$, and $f \in L_{p}[0, r]$. By (2.1), (2.2), and Hölder's

$$
\begin{aligned}
\left|K_{n}(f, x)\right| & \leqslant\left(\int_{0}^{r} H_{n}(t-x) d t\right)^{1 / q}\left(\int_{0}^{r} H_{n}(t-x)|f(t)|^{p} d t\right)^{1 / p} \\
& \leqslant\left(\int_{0}^{r} H_{n}(t-x)|f(t)|^{p} d t\right)^{1 / p}
\end{aligned}
$$

and

$$
\left\|K_{n}(f)\right\|_{p} \leqslant\|f\|_{p} .
$$

The case $p=1$ is similar.
(2.4) Since $H_{n}(y)$ is even on [$-r, r$], for $0<\delta \leqslant x \leqslant r-\delta<r$ we have

$$
\begin{aligned}
\left|K_{n}((t-x), x)\right| & =\left|\int_{0}^{r}(t-x) H_{n}(t-x) d t\right| \\
& =\left|\int_{x}^{r-x} y H_{n}(y) d y\right| \leqslant \frac{\mu_{n}^{2}}{\delta} .
\end{aligned}
$$

(2.5) If $0 \leqslant x \leqslant r$ then

$$
K_{n}\left(e_{0}, x\right)=1-\left[\int_{r-x}^{r} H_{n}(t) d t+\int_{-r}^{-x} H_{n}(t) d t\right] .
$$

If $0<\delta \leqslant x \leqslant r-\delta<r$ then

$$
\left|K_{n}\left(e_{0}, x\right)-1\right| \leqslant \frac{2}{\delta^{2}} \int_{-r}^{r} t^{2} H_{n}(t) d t=2 \frac{\mu_{n}^{2}}{\delta^{2}} .
$$

(2.6) This is obvious.
(2.7) This follows from Hölder's, (2.1) and (2.6).

Let $1 \leqslant p<\infty$ and $L_{p}{ }^{2}(I)$ be the space of those functions $f \in L_{p}(I)$ with f^{\prime} absolutely continuous and $f^{\prime \prime} \in L_{p}(I)$. The next lemma gives an upper bound for the degree of L_{p}-approximation with (1.3) to "smooth" functions $f \in L_{p}{ }^{2}(I)$.

Lemma 2. Let $f \in L_{p}{ }^{2}(I)$ and $1 \leqslant p<\infty$. For all n sufficiently large,

$$
\left\|K_{n}(f)-f\right\|_{p} \leqslant c_{p}\left(\|f\|_{p}+\left\|f^{\prime \prime}\right\|_{p}\right) \mu_{n}^{1 / p},
$$

where c_{p} is a positive constant, independent of f and n.
Proof. First assume $p>1$ and $x \in[0, r]$. Since $f \in L_{p}{ }^{2}(I)$, we have

$$
f(t)-f(x)=(t-x) f^{\prime}(x)+\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u
$$

and

$$
\begin{aligned}
K_{n}(f(t)-f(x), x) & =f^{\prime}(x) K_{n}(t-x, x)+K_{n}\left[\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u, x\right] \\
& \equiv I_{1}(x)+I_{2}(x)
\end{aligned}
$$

Using [6] we obtain

$$
\left\|I_{1}\right\|_{p} \leqslant c_{1}\left(\|f\|_{p}+\left\|f^{\prime \prime}\right\|_{p}\right)\left(\int_{0}^{r}\left|K_{n}(t-x, x)\right|^{p} d x\right)^{1 / p}
$$

Also

$$
\begin{aligned}
\left|K_{n}(t-x, x)\right| & =\left|\int_{0}^{r}(t-x) H_{n}(t-x) d t\right| \\
& =\left|\int_{-x}^{r-x} t H_{n}(t) d t\right| \leqslant r, \quad 0 \leqslant x \leqslant r
\end{aligned}
$$

Hence, using (2.4) with $0<\delta<r / 2$

$$
\left(\int_{0}^{r}\left|K_{n}(t-x, x)\right|^{p} d x\right)^{1 / p} \leqslant 2 r \delta^{1 / p}+r^{1 / p} \frac{\mu_{n}^{2}}{\delta}
$$

and

$$
\left\|I_{1}\right\|_{p} \leqslant c_{2}\left(\|f\|_{p}+\left\|f^{\prime \prime}\right\|_{p}\right)\left(\delta^{1 / p}+\frac{\mu_{n}^{2}}{\delta}\right)
$$

We have

$$
\begin{aligned}
\left|I_{2}(x)\right| & \leqslant \int_{0}^{r} H_{n}(t-x)|t-x|\left|\int_{x}^{t}\right| f^{\prime \prime}(u)|d u| d t \\
& \leqslant \theta_{f^{\prime \prime}}(x) \int_{0}^{r} H_{n}(t-x)(t-x)^{2} d t
\end{aligned}
$$

where

$$
\theta_{f^{\prime \prime}}(x)=\sup _{\substack{0 \leqslant t \leqslant r \\ t \neq x}} \frac{1}{t-x} \int_{x}^{t}\left|f^{\prime \prime}(u)\right| d u
$$

is the Hardy-Littlewood majorante of $f^{\prime \prime}$ at x. Since $p>1$ and $f^{\prime \prime} \in L_{p}(I)$, $\theta_{f^{\prime}} \in L_{p}(I)$ with [13, Theorem 13.15]

$$
\int_{0}^{r}\left[\theta_{f^{\prime \prime}}(x)\right]^{p} d x \leqslant 2\left(\frac{p}{p-1}\right)^{p} \int_{0}^{r}\left|f^{\prime \prime}(x)\right|^{p} d x
$$

Therefore, using (2.6)

$$
\left\|I_{2}\right\|_{p} \leqslant 2^{1 / p}\left(\frac{p}{p-1}\right)\left\|f^{\prime \prime}\right\|_{p} \mu_{n}^{2}
$$

By [6]

$$
|f(x)|\left|K_{n}\left(e_{0}, x\right)-1\right| \leqslant C_{3}\left(\|f\|_{p}+\left\|f^{n}\right\|_{p}\right)\left|K_{n}\left(e_{0}, x\right)-1\right|
$$

Let $0<\delta<r / 2$. Using (1.1), (2.1), (2.5) and the fact that H_{n} is even we have

$$
\left.\begin{array}{l}
\left\|K_{n}\left(e_{0}\right)-e_{0}\right\|_{p} \\
\quad \leqslant\left(\int_{0}^{r}\left(1-K_{n}\left(e_{0}, x\right) d x\right)^{1 / p}\right. \\
\quad=\left[\left(\int_{0}^{\delta}+\int_{\delta}^{r}\right) \int_{x}^{r} H_{n}(t) d t d x+\left(\int_{0}^{r-\delta} \int_{r-\delta}^{r}\right) \int_{r-x}^{r} H_{n}(t) d t d x\right]^{1 / p} \\
\end{array} \quad \leqslant\left[\delta+\int_{\delta}^{r} H_{n}(t) \int_{0}^{t} d x d t+\delta+\int_{\delta}^{r} H_{n}(t) \int_{r-t}^{r} d x d t\right]^{1 / p}\right] \text {. }
$$

Hence

$$
\left(\int_{0}^{r}\left(|f(x)|\left|K_{n}\left(e_{0}, x\right)-1\right|\right)^{p} d x\right)^{1 / p} \leqslant c_{4}\left(\|f\|_{p}+\left\|f^{n}\right\|_{\nu}\right)\left(\delta+\frac{\mu_{n}^{2}}{\delta}\right)^{1 / p}
$$

Choose $\delta=\mu_{n}$. For all n sufficiently large, $0<\mu_{n}<r / 2$ by (1.2) and it follows from the above calculations that

$$
\left\|K_{n}(f)-f\right\|_{p} \leqslant C_{p}\left(\|f\|_{p}+\left\|f^{n}\right\|_{p}\right) \mu_{n}^{1 / p}
$$

Now assume $p=1, x \in[0, r]$ and $0<\delta<r / 2$. As before,

$$
\int_{0}^{r}|f(x)|\left|K_{n}\left(e_{0}, x\right)-1\right| d x \leqslant C_{5}\left(\|f\|_{1}+\|\left. f^{\prime \prime}\right|_{1}\right)\left(\delta+\frac{\mu_{n}^{2}}{\delta}\right)
$$

and

$$
\int_{0}^{r}\left|f^{\prime}(x)\right|\left|K_{n}(t-x, x)\right| d x \leqslant C_{6}\left(\|f\|_{1}+\left\|f^{\prime \prime}\right\|_{1}\right)\left(\delta+\frac{\mu_{n}^{2}}{\delta}\right) .
$$

Next

$$
\begin{aligned}
\int_{0}^{r} \mid & I_{2}(x) \mid d x \\
& \leqslant \int_{0}^{r} \int_{0}^{r} H_{n}(t-x)|t-x|\left|\int_{x}^{t}\right| f^{\prime \prime}(u)|d u| d t d x \\
& =\left(\int_{0}^{\delta}+\int_{\delta}^{r-\delta}+\int_{r-\delta}^{r}\right) \int_{0}^{r} H_{n}(t-x)|t-x|\left|\int_{x}^{t}\right| f^{\prime \prime}(u)|d u| d t d x \\
& \equiv A_{1}+A_{2}+A_{3}
\end{aligned}
$$

For A_{2} let $T_{1}=\{t:|t-x| \leqslant \delta\}$ and $T_{2}=\{t:|t-x| \geqslant \delta\}$. Then, using (2.6),

$$
\begin{aligned}
A_{2} \leqslant & \int_{\delta}^{r-\delta} \int_{T_{1}} H_{n}(t-x)|x-t|\left|\int_{x}^{t}\right| f^{\prime \prime}(u)|d u| d t d x \\
& +\int_{\delta}^{r-\delta} \int_{0}^{r} H_{n}(t-x) \frac{(t-x)^{2}}{\delta}\left|\int_{x}^{t}\right| f^{\prime \prime}(u)|d u| d t d x \\
\leqslant & \delta \int_{0}^{r-\delta} \int_{T_{1}} H_{n}(t-x)\left|\int_{x}^{t}\right| f^{\prime \prime}(u)|d u| d t d x+r\left\|f^{\prime \prime}\right\|_{1} \frac{\mu_{n}^{2}}{\delta}
\end{aligned}
$$

Also

$$
\begin{aligned}
\int_{\delta}^{r-\delta} & \int_{T_{1}} H_{n}(t-x)\left|\int_{x}^{t}\right| f^{\prime \prime}(u)|d u| d t d x \\
\leqslant & \int_{\delta}^{r-\delta}\left\{\int_{x-\delta}^{x} H_{n}(t-x) \int_{t}^{x}\left|f^{\prime \prime}(u)\right| d u d t\right. \\
& \left.+\int_{x}^{x+\delta} H_{n}(t-x) \int_{x}^{t}\left|f^{\prime \prime}(u)\right| d u d t\right\} d x \\
\leqslant & \int_{\delta}^{r-\delta}\left\{\int_{x-\delta}^{x} H_{n}(t-x) \int_{x-\delta}^{x}\left|f^{\prime \prime}(u)\right| d u d t\right. \\
& \left.+\int_{x}^{x+\delta} H_{n}(t-x) \int_{x}^{x+\delta}\left|f^{\prime \prime}(u)\right| d u d t\right\} d x \\
\leqslant & \int_{\delta}^{r-\delta}\left\{\int_{x-\delta}^{x}\left|f^{\prime \prime}(u)\right| \int_{0}^{r} H_{n}(t-x) d t d u\right. \\
& \left.+\int_{x}^{x+\delta}\left|f^{\prime \prime}(u)\right| \int_{0}^{r} H_{n}(t-x) d t d u\right\} d x \\
\leqslant & \int_{\delta}^{r-\delta} \int_{x-\delta}^{x+\delta}\left|f^{\prime \prime}(u)\right| d u d x=\int_{\delta}^{r-\delta} \int_{-\delta}^{\delta}\left|f^{\prime \prime}(t+x)\right| d t d x \\
= & \int_{-\delta}^{\delta} \int_{\delta}^{r-\delta}\left|f^{\prime \prime}(t+x)\right| d x d t \leqslant 2 \delta\left\|f^{\prime \prime}\right\|_{1}
\end{aligned}
$$

Hence

$$
A_{2} \leqslant\left\|f^{\prime \prime}\right\|_{1}\left(r \frac{\mu_{n}^{2}}{\delta}+2 \delta^{2}\right)
$$

Finally, using (2.7)

$$
A_{i} \leqslant\left\|f^{\prime \prime}\right\|_{1} \delta \mu_{n}, \quad i=1,3
$$

and therefore

$$
\int_{0}^{r}\left|I_{2}(x)\right| d x \leqslant C_{7}\left\|f^{\prime \prime}\right\|_{1}\left(\delta^{2}+\delta \mu_{n}+\frac{\mu_{n}{ }^{2}}{\delta}\right)
$$

Lemma 2 for $p=1$ follows by choosing $\delta=\mu_{n}$.
In what follows we will measure smoothness using the K-functional of Petre [12]. It is, for $f \in L_{p}(I), 1 \leqslant p \leqslant \infty$, defined by

$$
K_{p}(t, f)=\inf _{g \in L_{p}^{2}(I)}\left(\|f-g\|_{p}+t\left(\|g\|_{p}+\left\|g^{\prime \prime}\right\|_{p}\right), \quad t \geqslant 0\right.
$$

This measures the degree of approximation of a function $f \in L_{p}(I)$ by smoother functions $g \in L_{p}{ }^{2}(I)$ with simultaneous control on the size of $\|g\|_{p}+\left\|g^{\prime \prime}\right\|_{p}$. The second order integral modulus of smoothness is given by

$$
\omega_{2 p}(f, h)=\sup _{0<t \leqslant h}\|f(\cdot+t)-2 f(\cdot)+f(\cdot-t)\|_{p}\left(I_{t}\right)
$$

where I_{t} indicates that the L_{p}-norm is taken over the interval $[0+t, r-t$]. It is known [5, 7] that there are constants $c_{1}>0, c_{2}>0$, independent of f and p, such that

$$
\begin{equation*}
c_{1} \omega_{2, p}\left(f, t^{1 / 2}\right) \leqslant K_{p}(t, f) \leqslant \min (1, t)\|f\|_{p}+2 c_{2} \omega_{2, p}\left(f, t^{1 / 2}\right) \tag{2.8}
\end{equation*}
$$

We shall use Lemma 2 and (2.8) to establish the degree of approximation with (1.3). Namely, we first approximate $f \in L_{p}(I)$ by $g \in L_{p}{ }^{2}(I)$ and then use Lemma 2, the definition of the K-functional and (2.8). See also [1, 5, $10,11]$ for this approach.

Theorem 3. Let $f \in L_{p}(I), 1 \leqslant p<\infty$. For all n sufficiently large,

$$
\begin{equation*}
\left\|K_{n}(f)-f\right\|_{p} \leqslant M_{p}\left[\mu_{n}^{1 / p}\|f\|_{p}+\omega_{2, p}\left(f, \mu_{n}^{1 / 2 p}\right)\right] \tag{2.9}
\end{equation*}
$$

where M_{p} is a positive constant, independent of f and n.
Proof. For all n sufficiently large,

$$
\begin{aligned}
\left\|K_{n}(h)-h\right\|_{p} & \leqslant 2\|h\|_{p}, & & h \in L_{p}(I), \\
& \leqslant C_{p} \mu_{n}^{1 / p}\left(\|h\|_{p}+\left\|h^{\prime \prime}\right\|_{p}\right), & & h \in L_{p}^{2}(I)
\end{aligned}
$$

where C_{p} is positive constant, independent of h and n. When $f \in L_{p}(I)$ and g is an arbitrary function in $L_{p}{ }^{2}(I)$, then

$$
\begin{aligned}
\left\|K_{n}(f)-f\right\|_{p} & \leqslant\left\|K_{n}(f-g)-(f-g)\right\|_{p}+\left\|K_{n}(g)-g\right\|_{p} \\
& \leqslant 2\|f-g\|_{p}+C_{p} \mu_{n}^{1 / p}\left(\|g\|_{p}+\left\|g^{\prime \prime}\right\|_{p}\right)
\end{aligned}
$$

Taking the infimum over all $g \in L_{p}{ }^{2}(I)$ on the right hand side, using the definition of the K-functional and (2.8), we obtain (2.9).

Corollary 4. If $f \in \operatorname{Lip}\left(\beta, L_{p}(I)\right)$ for $0<\beta \leqslant 1$ then

$$
\left\|K_{n}(f)-f\right\|_{\nu}=0\left(\mu_{n}^{\beta / 2 p}\right), \quad n \rightarrow \infty
$$

Here the $\operatorname{Lipschitz}$ class $\operatorname{Lip}\left(\beta, L_{p}\right)$ of order β with respect to the L_{p}-norm is defined as the collection of all functions $f \in L_{p}(I)$ with the property $\omega_{2, p}(f, t)=O\left(t^{\beta}\right), t \rightarrow 0^{+}$.

Remarks. Since (1.3) is a global contractive map, we can also apply the general quantitative estimate of Berens and De Vore [1]. Define

$$
\lambda_{n, p}^{2}=\max _{i=0,1}\left\|K_{n}\left(e_{i}\right)-e_{i}\right\|_{p}
$$

We have shown in the proof of Lemma 2 that $\left\|K_{n}\left(e_{0}\right)-e_{0}\right\|_{p}=O\left(\mu_{n}^{1 / p}\right)$ as $n \rightarrow \infty$. Also

$$
\left\|K_{n}\left(e_{1}\right)-e_{1}\right\|_{p} \leqslant \int_{0}^{r}\left|K_{n}(t-x, x)\right|^{p} d x^{1 / p}+r\left\|K_{n}\left(e_{0}\right)-e_{0}\right\|_{p}
$$

It now follows from (2.4) that $\left\|K_{n}\left(e_{1}\right)-e_{1}\right\|_{p}=O\left(\mu_{n}^{1 / p}\right)$ as $n \rightarrow \infty$. Hence

$$
\lambda_{n, p}^{2}=0\left(\mu_{n}^{1 / \nu}\right), \quad n \rightarrow \infty
$$

Applying [1, p. 291] we obtain, for all sufficiently large n,

$$
\begin{equation*}
\left\|K_{n}(f)-f\right\|_{p} \leqslant M_{p}^{\prime}\left[\mu_{n}^{1 / p^{2}}\|f\|_{p}+\omega_{2, p}\left(f, \mu_{n}^{1 / 2 p^{2}}\right)\right], \tag{2.10}
\end{equation*}
$$

where M_{p}^{\prime} is a positive constant, independent of f and n.
Estimate (2.9) is better than (2.10) if $p>1$. This is not too surprising, since Lemma 1 of [1] appears to be a rather coarse estimate for $p>1$.

Acknowledgments

The author is grateful to Professor John Swetits of Old Dominion University and the referee for several helpful comments.

References

1. H. Berens and R. A. Devore, Quantitative Korovkin theorems for L_{p}-spaces, in "Approximation Theory II" (G. G. Lorentz, Ed.), pp. 289-298, Academic Press, New York, 1976.
2. R. Bojanic, A note on the degree of approximation to continuous functions, Enseignement Math. 15 (1969), 43-51.
3. R. Bojanic and O. Shisha, On the precision of uniform approximation of continuous functions by certain linear positive operators of convolution type, J. Approximation Theory 8 (1973), 101-113.
4. R. A. DeVore, "The Approximation of Continuous Functions by Positive Linear Operators," Springer-Verlag, New York, 1972.
5. R. A. DeVore, Degree of approximation, in "Approximation Theory II" (G. G. Lorentz, Ed.) pp. 117-161, Academic Press, New York, 1976.
6. S. Goldberg and A. Meir, Minimum moduli of ordinary differential operators, Proc. London Math. Soc. 3, No. 23 (1971), 1-15.
7. H. Johnen, Inequalities connected with the moduli of smoothness, Mat. Vesnik 9 (24) (1972), 289-303.
8. P. P. Korovkin, "Linear Operators and Approximation Theory," Delhi, 1960.
9. R. G. Mamedov, On the order of approximation of functions by linear positive operators, Dokl. Akad. Nauk SSSR, 128 (1959), 674-676.
10. M. W. Müller, Die Güte der L_{p}-Approximation durch Kantorovic-Polynome, Math. Z. 151 (1976), 243-246.
11. M. W. Müller, Degree of L_{p}-approximation by integral Schoenberg splines, J. Approximation Theory, to appear.
12. J. Peetre, "A Theory of Interpolation of Normed Spaces," Lecture Notes, Brazilia, 1963.
13. A. Zygmund, "Trigonometric Series," Vols. I, II, London/New York, Cambridge Univ. Press, 1968.
