Degree of L_p-Approximation by Certain Positive Convolution Operators

BRUCE WOOD

Mathematics Department, University of Arizona, Tucson, Arizona 85721 Communicated by Oved Shisha Received December 21, 1976

The degree of L_p -approximation for a class of positive convolution operators is investigated. Recent results of De Vore, Bojanic, and Shisha for the uniform approximation by these operators and the K-functional of Peetre are employed to obtain the degree of approximation in terms of the integral modulus of smoothness.

1. INTRODUCTION

Let I = [0, r], $1 \le p < \infty$ and let $L_p(I)$ denote the space of real valued *p*th power integrable functions on *I*, with $\|\cdot\|_p$ the usual L_p -norm on *I*. Let $\{H_n(y)\}$ be a sequence of nonnegative, even and continuous functions on [-r, r] such that

$$\int_{-r}^{r} H_n(y) \, dy = 1, \qquad n = 1, 2, ..., \tag{1.1}$$

and

$$\int_{-r}^{r} y^{2} H_{n}(y) dy \equiv \mu_{n}^{2} \to 0, \qquad n \to \infty.$$
 (1.2)

For $f \in L_p(I)$, $1 \leq p < \infty$, and $0 \leq x \leq r$, we define the convolution operator

$$K_n(f, x) = \int_0^r f(t) H_n(t-x) dt, \qquad n = 1, 2, \dots .$$
 (1.3)

This is a linear operator mapping $L_p(I)$ into $L_p(I)$ and it is positive on I. The sequence $\{\mu_n\}$ determines the rate of uniform approximation of a continuous function f by the operator $K_n(f, x)$. There are two important examples of (1.3).

All rights of reproduction in any form reserved.

Korovkin operators. Let ϕ be a nonnegative, even and continuous function on [-r, r] decreasing on [0, r] and such that $\phi(0) = 1$ and $0 \leq \phi(t) < 1$ for $0 < t \leq r$. For $f \in L_p(I)$ we define

$$K_n(f, x) = \rho_n \int_0^r f(t) [\phi(t - x)]^n dt, \qquad (1.4)$$

where

$$\rho_n^{-1} = 2 \int_0^r \left[\phi(t)\right]^n dt$$

Operators (1.4) were introduced by Korovkin [8], who used them for the approximation of continuous functions. Later Bojanic and Shisha [3] showed that

$$\lim_{t \to 0^+} \frac{1 - \phi(t)}{t^{\alpha}} = c$$
 (1.5)

for some positive numbers α and c implies, for (1.4)

$$\mu_n = O(n^{-1/\alpha}), \qquad n \to \infty. \tag{1.6}$$

Many important special cases of (1.5) were noted in [3].

Bojanic-DeVore operators. We consider approximating polynomials generated by a sequence of orthogonal polynomials $\{P_n\}$ on [-1, 1] whose weight function w is nonnegative, even and Lebesgue integrable on [-1, 1] and has the following properties:

$$0 < m \leq w(x) \quad \text{for} \quad x \in [-r, r], \quad 0 < r \leq 1 \quad (1.7)$$

and

$$w(x) \leq M < \infty$$
 for $x \in [-\delta, \delta], \quad 0 < \delta \leq 1.$ (1.8)

Let

$$R_n(x) = c_n \left[\frac{P_{2n}(x)}{(x^2 - \alpha_{2n}^2)(x^2 - \alpha_{2n-1}^2)} \right]^2,$$

where α_{2n} and α_{2n-1} are the two smallest positive zeros of P_{2n} and $c_n > 0$ is chosen so that

$$\int_{-r}^{r} R_{n}(t) dt = 1, \qquad n = 1, 2, 3, \dots$$

For $f \in L_p(I)$ we define

$$K_n(f, x) = \int_0^r f(t) R_n(t-x) dt.$$
 (1.9)

Using (1.7) and (1.8), Bojanic [2] and DeVore [4] showed that, for (1.9)

$$\mu_n = O(n^{-1}), \qquad n \to \infty. \tag{1.10}$$

In this paper we shall utilize Peetre's K-functional [12] to obtain the degree of L_p -approximation with (1.3). The method of Peetre's K-functional gives the estimate of the rate of approximation in terms of the integral modulus of smoothness $\omega_{2,p}(f, h)$, while some previous results in this direction were expressed in terms of the usual L_p modulus of continuity (see for instance, Mamedov [9]).

2. DEGREE OF APPROXIMATION

In the sequel let $e_i(x) = x^i$ for i = 0, 1, 2.

LEMMA 1. For n = 1, 2, 3, ..., we have

$$\int_0^r H_n(t-x) dt = K_n(e_0, x) \leqslant 1, \qquad 0 \leqslant x \leqslant r, \tag{2.1}$$

$$\int_0^r H_n(t-x) \, dx \leqslant 1, \qquad 0 \leqslant t \leqslant r, \tag{2.2}$$

$$\|K_n\|_{\nu} \leq 1, \qquad 1 \leq p < \infty, \tag{2.3}$$

$$|K_n((t-x), x)| \leq \frac{{\mu_n}^2}{\delta}, \quad 0 < \delta \leq x \leq r-\delta < r,$$
 (2.4)

$$|K_n(e_0, x) - 1| \leq \frac{2\mu_n^2}{\delta^2}, \quad 0 < \delta \leq x \leq r - \delta < r,$$
 (2.5)

$$K_n((t-x)^2 x) \leqslant \mu_n^2, \quad 0 \leqslant x \leqslant r,$$
(2.6)

and

$$K_n(|t-x|, x) \leqslant \mu_n, \qquad 0 \leqslant x \leqslant r. \tag{2.7}$$

Proof. (2.1) For $x \in [0, r]$,

$$K_n(e_0, x) = \int_0^r H_n(t-x) dt \leq \int_{-r}^r H_n(y) dy = 1.$$

(2.2) For $t \in [0, r]$,

$$\int_0^r H_n(t-x)\,dx = \int_{t-r}^t H_n(y)\,dy \leqslant 1.$$

356

(2.3) Assume p > 1, 1/p + 1/q = 1, $0 \le x \le r$, and $f \in L_p[0, r]$. By (2.1), (2.2), and Hölder's

$$|K_n(f, x)| \leq \left(\int_0^r H_n(t-x) dt\right)^{1/q} \left(\int_0^r H_n(t-x) |f(t)|^p dt\right)^{1/p}$$
$$\leq \left(\int_0^r H_n(t-x) |f(t)|^p dt\right)^{1/p}$$

and

$$\|K_n(f)\|_p \leq \|f\|_p.$$

The case p = 1 is similar.

(2.4) Since $H_n(y)$ is even on [-r, r], for $0 < \delta \le x \le r - \delta < r$ we have

$$|K_n((t-x), x)| = \left| \int_0^r (t-x) H_n(t-x) dt \right|$$
$$= \left| \int_x^{r-x} y H_n(y) dy \right| \leq \frac{\mu_n^2}{\delta}.$$

(2.5) If $0 \leq x \leq r$ then

$$K_n(e_0, x) = 1 - \left[\int_{r-x}^r H_n(t) dt + \int_{-r}^{-x} H_n(t) dt \right].$$

If $0 < \delta \leqslant x \leqslant r - \delta < r$ then

$$|K_n(e_0, x) - 1| \leq \frac{2}{\delta^2} \int_{-r}^{r} t^2 H_n(t) dt = 2 \frac{\mu_n^2}{\delta^2}.$$

(2.6) This is obvious.

(2.7) This follows from Hölder's, (2.1) and (2.6).

Let $1 \leq p < \infty$ and $L_p^2(I)$ be the space of those functions $f \in L_p(I)$ with f' absolutely continuous and $f'' \in L_p(I)$. The next lemma gives an upper bound for the degree of L_p -approximation with (1.3) to "smooth" functions $f \in L_p^2(I)$.

LEMMA 2. Let $f \in L_p^2(I)$ and $1 \leq p < \infty$. For all n sufficiently large,

$$||K_n(f) - f||_p \leq c_p(||f||_p + ||f''||_p) \mu_n^{1/p},$$

where c_p is a positive constant, independent of f and n.

Proof. First assume p > 1 and $x \in [0, r]$. Since $f \in L_p^2(I)$, we have

$$f(t) - f(x) = (t - x) f'(x) + \int_x^t (t - u) f''(u) du$$

and

$$K_n(f(t) - f(x), x) = f'(x) K_n(t - x, x) + K_n \left[\int_x^t (t - u) f''(u) du, x \right]$$

= $I_1(x) + I_2(x)$.

Using [6] we obtain

$$\|I_1\|_p \leq c_1(\|f\|_p + \|f''\|_p) \left(\int_0^r |K_n(t-x,x)|^p dx\right)^{1/p}.$$

Also

$$|K_n(t-x, x)| = \left| \int_0^r (t-x) H_n(t-x) dt \right|$$
$$= \left| \int_{-x}^{r-x} t H_n(t) dt \right| \leq r, \quad 0 \leq x \leq r.$$

Hence, using (2.4) with $0 < \delta < r/2$

$$\left(\int_0^r |K_n(t-x,x)|^p dx\right)^{1/p} \leq 2r\delta^{1/p} + r^{1/p} \frac{\mu_n^2}{\delta}$$

and

$$||I_1||_p \leq c_2(||f||_p + ||f''||_p) \left(\delta^{1/p} + \frac{\mu_n^2}{\delta}\right).$$

We have

$$|I_2(x)| \leq \int_0^r H_n(t-x) |t-x| \left| \int_x^t |f''(u)| du \right| dt$$
$$\leq \theta_{f'}(x) \int_0^r H_n(t-x)(t-x)^2 dt,$$

where

$$\theta_{f''}(x) = \sup_{\substack{0 \le t \le r \\ t \ne x}} \frac{1}{t-x} \int_x^t |f''(u)| \ du$$

is the Hardy-Littlewood majorante of f'' at x. Since p > 1 and $f'' \in L_p(I)$, $\theta_{f''} \in L_p(I)$ with [13, Theorem 13.15]

$$\int_0^r \left[\theta_{f^*}(x)\right]^p dx \leqslant 2 \left(\frac{p}{p-1}\right)^p \int_0^r |f''(x)|^p dx.$$

Therefore, using (2.6)

$$\| I_2 \|_p \leq 2^{1/p} \left(\frac{p}{p-1} \right) \| f'' \|_p \mu_n^2.$$

By [6]

$$|f(x)| | K_n(e_0, x) - 1| \leq C_3(||f||_p + ||f''||_p) | K_n(e_0, x) - 1|.$$

358

Let $0 < \delta < r/2$. Using (1.1), (2.1), (2.5) and the fact that H_n is even we have

$$\| K_n(e_0) - e_0 \|_p$$

$$\leq \left(\int_0^r (1 - K_n(e_0, x) \, dx \right)^{1/p}$$

$$= \left[\left(\int_0^\delta + \int_\delta^r \right) \int_x^r H_n(t) \, dt \, dx + \left(\int_0^{r-\delta} \int_{r-\delta}^r \right) \int_{r-x}^r H_n(t) \, dt \, dx \right]^{1/p}$$

$$\leq \left[\delta + \int_\delta^r H_n(t) \int_0^t dx \, dt + \delta + \int_\delta^r H_n(t) \int_{r-t}^r dx \, dt \right]^{1/p}$$

$$\leq \left[2 \left(\delta + \frac{\mu_n^2}{\delta} \right) \right]^{1/p}.$$

Hence

$$\left(\int_0^r (|f(x)| | K_n(e_0, x) - 1 |)^p dx\right)^{1/p} \leq c_4(||f||_p + ||f''||_p) \left(\delta + \frac{\mu_n^2}{\delta}\right)^{1/p}.$$

Choose $\delta = \mu_n$. For all *n* sufficiently large, $0 < \mu_n < r/2$ by (1.2) and it follows from the above calculations that

$$||K_n(f) - f||_p \leq C_p(||f||_p + ||f''||_p) \mu_n^{1/p}.$$

Now assume p = 1, $x \in [0, r]$ and $0 < \delta < r/2$. As before,

$$\int_{0}^{r} |f(x)| | K_{n}(e_{0}, x) - 1| dx \leq C_{5}(||f||_{1} + ||f''||_{1}) \left(\delta + \frac{\mu_{n}^{2}}{\delta}\right)$$

and

$$\int_0^r |f'(x)| | K_n(t-x, x)| dx \leq C_6(||f||_1 + ||f''||_1) \left(\delta + \frac{\mu_n^2}{\delta}\right).$$

Next

$$\int_{0}^{r} |I_{2}(x)| dx$$

$$\leq \int_{0}^{r} \int_{0}^{r} H_{n}(t-x) |t-x| \left| \int_{x}^{t} |f''(u)| du \right| dt dx$$

$$= \left(\int_{0}^{\delta} + \int_{\delta}^{r-\delta} + \int_{r-\delta}^{r} \right) \int_{0}^{r} H_{n}(t-x) |t-x| \left| \int_{x}^{t} |f''(u)| du \right| dt dx$$

$$= A_{1} + A_{2} + A_{3}.$$

For A_2 let $T_1 = \{t : | t - x | \leq \delta\}$ and $T_2 = \{t : | t - x | \geq \delta\}$. Then, using (2.6),

$$A_{2} \leq \int_{\delta}^{r-\delta} \int_{T_{1}} H_{n}(t-x) |x-t| \left| \int_{x}^{t} |f''(u)| du \right| dt dx$$

+ $\int_{\delta}^{r-\delta} \int_{0}^{r} H_{n}(t-x) \frac{(t-x)^{2}}{\delta} \left| \int_{x}^{t} |f''(u)| du \right| dt dx$
$$\leq \delta \int_{\delta}^{r-\delta} \int_{T_{1}} H_{n}(t-x) \left| \int_{x}^{t} |f''(u)| du \right| dt dx + r ||f''||_{1} \frac{\mu_{n}^{2}}{\delta}.$$

Also

$$\begin{split} \int_{\delta}^{r-\delta} \int_{T_1} H_n(t-x) \left| \int_x^t |f''(u)| \, du \right| dt \, dx \\ &\leqslant \int_{\delta}^{r-\delta} \left\{ \int_{x-\delta}^x H_n(t-x) \int_t^x |f''(u)| \, du \, dt \right\} \\ &+ \int_x^{x+\delta} H_n(t-x) \int_x^t |f''(u)| \, du \, dt \right\} dx \\ &\leqslant \int_{\delta}^{r-\delta} \left\{ \int_{x-\delta}^x H_n(t-x) \int_{x-\delta}^x |f''(u)| \, du \, dt \right\} \\ &+ \int_x^{x+\delta} H_n(t-x) \int_x^{x+\delta} |f''(u)| \, du \, dt \right\} dx \\ &\leqslant \int_{\delta}^{r-\delta} \left\{ \int_{x-\delta}^x |f''(u)| \int_0^r H_n(t-x) \, dt \, du \right\} \\ &+ \int_x^{x+\delta} |f''(u)| \int_0^r H_n(t-x) \, dt \, du \\ &+ \int_x^{x+\delta} |f''(u)| \, du \, dx = \int_{\delta}^{r-\delta} \int_{-\delta}^{\delta} |f''(t+x)| \, dt \, dx \\ &\leqslant \int_{\delta}^{r-\delta} \int_{\delta}^{r-\delta} |f''(t+x)| \, dx \, dt \leqslant 2\delta \, \|f''\|_1 \, . \end{split}$$

Hence

$$A_2 \leqslant \|f''\|_1 \left(r \, rac{\mu_n^2}{\delta} + \, 2\delta^2
ight).$$

Finally, using (2.7)

$$A_i \leqslant \|f''\|_1 \,\delta\mu_n\,, \qquad i=1,\,3,$$

and therefore

$$\int_0^r |I_2(x)| dx \leqslant C_7 ||f''||_1 \left(\delta^2 + \delta \mu_n + \frac{\mu_n^2}{\delta}\right).$$

Lemma 2 for p = 1 follows by choosing $\delta = \mu_n$.

In what follows we will measure smoothness using the K-functional of Petre [12]. It is, for $f \in L_p(I)$, $1 \leq p \leq \infty$, defined by

$$K_p(t,f) = \inf_{g \in L_p^2(I)} (\|f - g\|_p + t(\|g\|_p + \|g''\|_p), \quad t \ge 0.$$

This measures the degree of approximation of a function $f \in L_p(I)$ by smoother functions $g \in L_p^2(I)$ with simultaneous control on the size of $||g||_p + ||g''||_p$. The second order integral modulus of smoothness is given by

$$\omega_{2p}(f,h) = \sup_{0 < t \leq h} \|f(\cdot+t) - 2f(\cdot) + f(\cdot-t)\|_p (I_t)$$

where I_t indicates that the L_p -norm is taken over the interval [0 + t, r - t]. It is known [5, 7] that there are constants $c_1 > 0$, $c_2 > 0$, independent of f and p, such that

$$c_1\omega_{2,p}(f,t^{1/2}) \leqslant K_p(t,f) \leqslant \min(1,t) \|f\|_p + 2c_2\omega_{2,p}(f,t^{1/2}).$$
(2.8)

We shall use Lemma 2 and (2.8) to establish the degree of approximation with (1.3). Namely, we first approximate $f \in L_p(I)$ by $g \in L_p^2(I)$ and then use Lemma 2, the definition of the K-functional and (2.8). See also [1, 5, 10, 11] for this approach.

THEOREM 3. Let $f \in L_p(I)$, $1 \le p < \infty$. For all n sufficiently large,

$$|| K_n(f) - f ||_p \leq M_p[\mu_n^{1/p} || f ||_p + \omega_{2,p}(f, \mu_n^{1/2p})],$$
 (2.9)

where M_p is a positive constant, independent of f and n.

Proof. For all *n* sufficiently large,

$$\| K_n(h) - h \|_p \leq 2 \| h \|_p, \qquad h \in L_p(I), \\ \leq C_p \mu_n^{1/p} (\| h \|_p + \| h'' \|_p), \qquad h \in L_p^2(I).$$

where C_p is positive constant, independent of *h* and *n*. When $f \in L_p(I)$ and *g* is an arbitrary function in $L_p^2(I)$, then

$$\| K_n(f) - f \|_p \leq \| K_n(f - g) - (f - g) \|_p + \| K_n(g) - g \|_p$$

 $\leq 2 \| f - g \|_p + C_p \mu_n^{1/p} (\| g \|_p + \| g'' \|_p).$

640/23/4-5

Taking the infimum over all $g \in L_p^2(I)$ on the right hand side, using the definition of the K-functional and (2.8), we obtain (2.9).

COROLLARY 4. If
$$f \in \operatorname{Lip}(\beta, L_p(I))$$
 for $0 < \beta \leq 1$ then
 $\|K_n(f) - f\|_p = 0(\mu_n^{\beta/2p}), \quad n \to \infty.$

Here the Lipschitz class Lip (β, L_p) of order β with respect to the L_p -norm is defined as the collection of all functions $f \in L_p(I)$ with the property $\omega_{2,p}(f, t) = O(t^{\beta}), t \to 0^+$.

Remarks. Since (1.3) is a global contractive map, we can also apply the general quantitative estimate of Berens and De Vore [1]. Define

$$\lambda_{n,p}^2 = \max_{i=0,1} \| K_n(e_i) - e_i \|_p$$

We have shown in the proof of Lemma 2 that $||K_n(e_0) - e_0||_p = O(\mu_n^{1/p})$ as $n \to \infty$. Also

$$\|K_n(e_1) - e_1\|_p \leq \int_0^r \|K_n(t-x, x)\|^p \, dx^{1/p} + r \, \|K_n(e_0) - e_0\|_p \, .$$

It now follows from (2.4) that $||K_n(e_1) - e_1||_p = O(\mu_n^{1/p})$ as $n \to \infty$. Hence

$$\lambda_{n,p}^2 = 0(\mu_n^{1/p}), \qquad n \to \infty.$$

Applying [1, p. 291] we obtain, for all sufficiently large n,

$$\|K_{n}(f) - f\|_{p} \leq M'_{p}[\mu_{n}^{1/p^{2}} \|f\|_{p} + \omega_{2,p}(f, \mu_{n}^{1/2p^{2}})], \qquad (2.10)$$

where M'_{p} is a positive constant, independent of f and n.

Estimate (2.9) is better than (2.10) if p > 1. This is not too surprising, since Lemma 1 of [1] appears to be a rather coarse estimate for p > 1.

ACKNOWLEDGMENTS

The author is grateful to Professor John Swetits of Old Dominion University and the referee for several helpful comments.

References

- 1. H. BERENS AND R. A. DEVORE, Quantitative Korovkin theorems for L_p -spaces, in "Approximation Theory II" (G. G. Lorentz, Ed.), pp. 289–298, Academic Press, New York, 1976.
- R. BOJANIC, A note on the degree of approximation to continuous functions, *Enseignement Math.* 15 (1969), 43-51.

- 3. R. BOJANIC AND O. SHISHA, On the precision of uniform approximation of continuous functions by certain linear positive operators of convolution type, *J. Approximation Theory* 8 (1973), 101–113.
- 4. R. A. DEVORE, "The Approximation of Continuous Functions by Positive Linear Operators," Springer-Verlag, New York, 1972.
- 5. R. A. DEVORE, Degree of approximation, in "Approximation Theory II" (G. G. Lorentz, Ed.) pp. 117-161, Academic Press, New York, 1976.
- 6. S. GOLDBERG AND A. MEIR, Minimum moduli of ordinary differential operators, *Proc. London Math. Soc.* 3, No. 23 (1971), 1–15.
- 7. H. JOHNEN, Inequalities connected with the moduli of smoothness, *Mat. Vesnik* 9 (24) (1972), 289-303.
- 8. P. P. KOROVKIN, "Linear Operators and Approximation Theory," Delhi, 1960.
- 9. R. G. MAMEDOV, On the order of approximation of functions by linear positive operators, *Dokl. Akad. Nauk SSSR*, **128** (1959), 674-676.
- 10. M. W. MÜLLER, Die Güte der L_p -Approximation durch Kantorovic-Polynome, Math. Z. 151 (1976), 243-246.
- 11. M. W. MÜLLER, Degree of L_p -approximation by integral Schoenberg splines, J. Approximation Theory, to appear.
- 12. J. PEETRE, "A Theory of Interpolation of Normed Spaces," Lecture Notes, Brazilia, 1963.
- 13. A. ZYGMUND, "Trigonometric Series," Vols. I, II, London/New York, Cambridge Univ. Press, 1968.